Advertisement
Review Article| Volume 7, ISSUE 3, P345-355, July 2011

Stem Cell Therapy for Cardiac Disease: What Can Be Learned from Oncology

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Failure Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Spangrude G.J.
        • Heimfeld S.
        • Weissman I.L.
        Purification and characterization of mouse hematopoietic stem cells.
        Science. 1988; 241: 58-62
        • Horowitz M.M.
        Uses and growth of hematopoietic cell transplantation.
        in: Applebaum F.R. Forman S.J. Negrin R.S. Thomas’ hematopoietic cell transplantation. 4th edition. Wiley-Blackwell, Chichester (UK)2009: 9-15
        • Ogawa M.
        Differentiation and proliferation of hematopoietic stem cells.
        Blood. 1993; 81: 2844-2853
        • Harrison D.E.
        • Stone M.
        • Astle C.M.
        Effects of transplantation on the primitive immunohematopoietic stem cell.
        J Exp Med. 1990; 172: 431-437
        • Wilson A.
        • Laurenti E.
        • Oser G.
        • et al.
        Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair.
        Cell. 2008; 135: 1118-1129
        • Passegue E.
        • Wagers A.J.
        • Giuriato S.
        • et al.
        Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates.
        J Exp Med. 2005; 202: 1599-1611
        • Bhatia M.
        • Wang J.C.
        • Kapp U.
        • et al.
        Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice.
        Proc Natl Acad Sci U S A. 1997; 94: 5320-5325
        • Wagers A.J.
        • Sherwood R.I.
        • Christensen J.L.
        • et al.
        Little evidence for developmental plasticity of adult hematopoietic stem cells.
        Science. 2002; 297: 2256-2259
        • Pittenger M.F.
        • Mackay A.M.
        • Beck S.C.
        • et al.
        Multilineage potential of adult human mesenchymal stem cells.
        Science. 1999; 284: 143-147
        • Caplan J.E.D.
        • Dennis J.E.
        Mesenchymal stem cells as trophic mediators.
        J Cell Biochem. 2006; 98: 1076-1084
        • Mangi A.A.
        • Noiseux N.
        • Kong D.
        • et al.
        Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts.
        Nat Med. 2003; 9: 1195-1201
        • Lin Y.
        • Weisdorf D.J.
        • Solovey A.
        • et al.
        Origins of circulating endothelial cells and endothelial outgrowth from blood.
        J Clin Invest. 2000; 105: 71-77
        • Grant M.G.
        • May W.S.
        • Caballero S.
        • et al.
        Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization.
        Nat Med. 2002; 8: 607-612
        • Yoder M.C.
        • Mead L.E.
        • Prater D.
        • et al.
        Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals.
        Blood. 2007; 109: 1801-1809
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Stadtfeld M.
        • Apostolou E.
        • Akutsu H.
        • et al.
        Abberant silencing of imprinted genes on chromosome 12qFl in mouse induced pluripotent stem cells.
        Nature. 2010; 465: 175-181
        • Yu J.
        • Hu K.
        • Smuga-Otto K.
        • et al.
        Human induced pluripotent stem cells free of vector and transgene sequences.
        Science. 2009; 324: 797-801
        • Zhang G.F.
        • Wilson G.F.
        • Soerens A.G.
        • et al.
        Functional cardiomyocytes derived from human induced pluripotent stem cells.
        Circ Res. 2009; 104: e30-e41
        • Taura D.
        • Sone M.
        • Homma K.
        • et al.
        Induction and isolation of vascular cells from human induced pluripotent stem cells: brief report.
        Arterioscler Thromb Vasc Biol. 2009; 29: 1100-1103
        • Karumbayaram S.
        • Novitch B.G.
        • Patterson M.
        • et al.
        Directed differentiation of human-induced pluripotent stem cells generates active motor neurons.
        Stem Cells. 2009; 27: 806-811
        • Tateishi K.
        • He J.
        • Taranova O.
        • et al.
        Generation of insulin-secreting islet-like clusters from human skin fibroblasts.
        J Biol Chem. 2008; 283: 31601-31607
        • Liu H.
        • Zhu F.
        • Zhang P.
        • et al.
        Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts.
        Cell Stem Cell. 2008; 3: 587-590
        • Ezashi T.
        • Telugu B.P.
        • Alexenko A.P.
        • et al.
        Derivation of induced pluripotent stem cells from pig somatic cells.
        Proc Natl Acad Sci U S A. 2009; 106: 10993-10998
        • Jacobson L.O.
        • Simmons E.L.
        • Marks E.K.
        • et al.
        Recovery from radiation injury.
        Science. 1951; 113: 510-511
        • Lorenz E.
        • Uphoff D.
        • Reid T.R.
        • et al.
        Modification of irradiation injury in mice and guinea pigs by bone marrow injections.
        J Natl Cancer Inst. 1951; 12: 197-201
        • Ford C.E.
        • Hamerton J.L.
        • Barnes D.W.H.
        • et al.
        Cytological identification of radiation-chimeras.
        Nature. 1956; 177: 452-454
        • Barnes D.W.
        • Corp M.J.
        • Loutit J.F.
        • et al.
        Treatment of murine leukemia with X-rays and homologous bone marrow. Preliminary communication.
        Br Med J. 1956; 2: 626-627
        • Thomas E.D.
        • Lochte H.L.
        • Lu W.C.
        • et al.
        Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy.
        N Engl J Med. 1957; 25: 491-496
        • Bortin M.M.
        A compendium of reported human bone marrow transplants.
        Transplantation. 1970; 9: 571-587
        • Storb R.
        • Rudolph R.H.
        • Thomas E.D.
        Marrow grafts between canine siblings matched by serotyping and mixed leukocyte culture.
        J Clin Invest. 1971; 50: 1272-1275
        • Storb R.
        • Epstein R.B.
        • Graham T.C.
        • et al.
        Methotrexate regimens for control of graft-versus-host disease in dogs with allogeneic marrow grafts.
        Transplantation. 1970; 9: 240-246
        • Thomas E.D.
        • Buckner C.D.
        • Banaji M.
        • et al.
        One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation.
        Blood. 1977; 49: 511-533
        • Thomas E.D.
        • Buckner C.D.
        • Clift R.A.
        • et al.
        Marrow transplantation for acute nonlymphoblastic leukemia in first remission.
        N Engl J Med. 1979; 301: 597-599
        • Orlic D.
        • Kajstura J.
        • Chimenti S.
        • et al.
        Bone marrow cells regenerate infracted myocardium.
        Nature. 2001; 410: 701-705
        • Kocher A.A.
        • Schuster M.D.
        • Szabolcs M.J.
        • et al.
        Neovascularization of ischemic myocardium by human bone-marrow derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.
        Nat Med. 2001; 7: 430-436
        • Gnecchi M.
        • He H.
        • Liang O.D.
        • et al.
        Paracrine action accounts for marked protection of ischemic heart by modified Akt-modified mesenchymal stem cells.
        Nat Med. 2005; 11: 367-368
        • Wang X.
        • Jameel N.
        • Li Q.
        • et al.
        Stem cells for myocardial repair with use of a transarterial catheter.
        Circulation. 2009; 120: S238-S246
        • Zeng L.
        • Hu Q.
        • Wang X.
        • et al.
        Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with post-infarction left ventricular remodeling.
        Circulation. 2007; 115: 1866-1875
        • Nelson T.J.
        • Martinex-Fernandez A.
        • Yamada S.
        • et al.
        Repair of acute myocardial infarction human stemness factors induced pluripotent stem cells.
        Circulation. 2009; 120: 408-416
        • Assmus B.
        • Schachinger V.
        • Teupe C.
        • et al.
        Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-MI).
        Circulation. 2002; 106: 3009-3017
        • Wollert K.C.
        • Meyer G.P.
        • Lotz J.
        • et al.
        Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial.
        Lancet. 2004; 364: 141-148
        • Strauer B.E.
        • Brehm M.
        • Zeus T.
        • et al.
        Repair of myocardium bu autologous intracoronary mononuclear bone marrow cell transplantation in humans.
        Circulation. 2002; 106: 1913-1918
        • Assmus B.
        • Honold J.
        • Schachinger V.
        • et al.
        Transcoronary transplantation of progenitor cells after myocardial infarction.
        N Engl J Med. 2006; 355: 1222-1232
        • Meyer G.P.
        • Wollert K.C.
        • Lotz J.
        • et al.
        Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone Marrow Transfer to Enhance ST-Elevation Infarct Regeneration) trial.
        Circulation. 2006; 113: 1287-1294
        • Ripa R.S.
        • Haack-Sorensen M.
        • Wang Y.
        • et al.
        Bone marrow derived mesenchymal cell mobalization by granulocyte-colony stimulating factor after acute myocardial infarction: results form the Stem Cell in Myocardial Infarction (STEMMI) trial.
        Circulation. 2007; 116: I24-I34
        • Janssens S.
        • Dubois C.
        • Theunissen K.
        • et al.
        Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomized controlled trial.
        Lancet. 2006; 367: 113-121
        • Lunde K.
        • Solheim S.
        • Aakhus S.
        • et al.
        Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction.
        N Engl J Med. 2006; 355: 1199-1209
        • Schachinger V.
        • Erbs S.
        • Elsasser A.
        • et al.
        Inracoronary bone marrow-derived progenitor cells in acute myocardial infarction.
        N Engl J Med. 2006; 355: 1210-1221
        • Assmus B.
        • Rolf A.
        • Erbs S.
        • et al.
        Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction.
        Circ Heart Fail. 2010; 3: 89-96
        • Yousef M.
        • Schannwell M.
        • Kostering M.
        • et al.
        The BALANCE study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction.
        J Am Coll Cardiol. 2009; 53: 2262-2269
        • Tendera M.
        • Wojakowski W.
        • Euzyllo W.
        • et al.
        Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Inracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) trial.
        Eur Heart J. 2009; 30: 1313-1321
        • Co M.
        • Tay E.
        • Lee C.H.
        • et al.
        Use of endothelial cell capture stent (Genous bio-engineered R stent) during primary percutaneous coronary intervention in acute myocardial infarction: intermediate-to long-term clinical follow up.
        Am Heart J. 2008; 155: 128-132
        • Hare J.M.
        • Traverse J.H.
        • Henry T.D.
        • et al.
        A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult mesenchymal stem cells (prochymal) after acute myocardial infarction.
        J Am Coll Cardiol. 2009; 54: 2277-2286
        • Tse H.F.
        • Kwong Y.L.
        • Chan J.K.
        • et al.
        Angiogenesis in ischemic myocardium by intramyocardial autologous cell implantation.
        Lancet. 2003; 361: 47-49
        • Fuchs S.
        • Satler L.F.
        • Kornowski R.
        • et al.
        Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease.
        J Am Coll Cardiol. 2003; 41: 1721-1724
        • Perin E.C.
        • Dohmann H.F.
        • Borojevic R.
        • et al.
        Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure.
        Circulation. 2003; 107: 2294-2302
        • Silva G.V.
        • Perin E.C.
        • Dohmann H.F.
        • et al.
        Catheter-based trans-endocardial delivery of autologous bone-marrow derived mononuclear cells in patients listed for heart transplantation.
        Tex Heart Inst J. 2004; 31: 214-219
        • Kuethe F.
        • Richartz B.M.
        • Kasper C.
        • et al.
        Autologous intracoronary mononuclear bone marrow cell transplantation in chronic ischemic cardiomyopathy in humans.
        Int J Cardiol. 2005; 100: 485-491
        • Strauer B.E.
        • Brehm M.
        • Zeus T.
        • et al.
        Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease. The ICAT study.
        J Am Coll Cardiol. 2005; 46: 1651-1658
        • Hendrikx M.
        • Hensen K.
        • Clijsters C.
        • et al.
        Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial.
        Circulation. 2006; 114: I101-I107
        • Assmus B.
        • Fischer-Rasokat U.
        • Honold J.
        • et al.
        Transcoronary transplantation of functionally competent BMCs in associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD registry.
        Circ Res. 2007; 100: 1234-1241
        • van Ramshort J.A.
        • Bax J.J.
        • Beeres S.L.
        • et al.
        Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial.
        JAMA. 2009; 301: 1997-2004
        • Seth S.
        • Narang R.
        • Bhargava B.
        • et al.
        Percutaneous intracoronary cellular cardiomyoplasty for nonischemic-cardiomyopathy: clinical and histopathological results: the first-in-man ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) trial.
        J Am Coll Cardiol. 2006; 48: 2350-2351
        • Thomas E.D.
        The Nobel prizes, 1990.
        in: Tryckeri A.B. Les prix Nobel. Norstedts, Stockholm (Sweden)1991: 227