Advertisement
Review Article| Volume 19, ISSUE 1, P137-152, January 2023

Noncoding RNAs in Pulmonary Arterial Hypertension

Current Knowledge and Translational Perspectives

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Failure Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sommer N.
        • Ghofrani H.A.
        • Pak O.
        • et al.
        Current and future treatments of pulmonary arterial hypertension.
        Br J Pharmacol. 2021; 178: 6-30
        • Vizza C.D.
        • Lang I.M.
        • Badagliacca R.
        • et al.
        Aggressive Afterload Lowering to Improve the Right Ventricle: A New Target for Medical Therapy in Pulmonary Arterial Hypertension?.
        Am J Respir Crit Care Med. 2022; 205: 751-760
        • Dueck A.
        • Meister G.
        Assembly and function of small RNA - argonaute protein complexes.
        Biol Chem. 2014; 395: 611-629
        • O’Brien J.
        • Hayder H.
        • Zayed Y.
        • et al.
        Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation.
        Front Endocrinol (Lausanne). 2018; 9https://doi.org/10.3389/FENDO.2018.00402
        • Condorelli G.
        • Latronico M.V.G.
        • Cavarretta E.
        MicroRNAs in cardiovascular diseases: Current knowledge and the road ahead.
        J Am Coll Cardiol. 2014; 63: 2177-2187
        • Romaine S.P.R.
        • Tomaszewski M.
        • Condorelli G.
        • et al.
        MicroRNAs in cardiovascular disease: an introduction for clinicians.
        Heart. 2015; 101: 921-928
        • Kabekkodu S.P.
        • Shukla V.
        • Varghese V.K.
        • et al.
        Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities.
        Wiley Interdiscip Rev RNA. 2020; 11: e1563
        • Hombach S.
        • Kretz M.
        Noncoding RNAs: Classification, Biology and Functioning.
        Adv Exp Med Biol. 2016; 937: 3-17
        • Sayed D.
        • Abdellatif M.
        MicroRNAs in development and disease.
        Physiol Rev. 2011; 91: 827-887
        • Gupta S.
        • Li L.
        Modulation of miRNAs in Pulmonary Hypertension.
        Int J Hypertens. 2015; 2015https://doi.org/10.1155/2015/169069
        • Lee A.
        • McLean D.
        • Choi J.
        • et al.
        Therapeutic implications of microRNAs in pulmonary arterial hypertension.
        BMB Rep. 2014; 47: 311-317
        • Neth P.
        • Nazari-Jahantigh M.
        • Schober A.
        • et al.
        MicroRNAs in flow-dependent vascular remodelling.
        Cardiovasc Res. 2013; 99: 294-303
        • Kumar S.
        • Kim C.W.
        • Simmons R.D.
        • et al.
        Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis mechanosensitive athero-miRs.
        Arterioscler Thromb Vasc Biol. 2014; 34: 2206-2216
        • Bienertova-Vasku J.
        • Novak J.
        • Vasku A.
        MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment.
        J Am Soc Hypertens. 2015; 9: 221-234
        • Bi R.
        • Bao C.
        • Jiang L.
        • et al.
        MicroRNA-27b plays a role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated receptor γ dependent Hsp90-eNOS signaling and nitric oxide production.
        Biochem Biophys Res Commun. 2015; 460: 469-475
        • Yang Z.
        • Kaye D.M.
        Mechanistic insights into the link between a polymorphism of the 3’UTR of the SLC7A1 gene and hypertension.
        Hum Mutat. 2009; 30: 328-333
        • Yang Z.
        • Venardos K.
        • Jones E.
        • et al.
        Identification of a novel polymorphism in the 3’UTR of the L-arginine transporter gene SLC7A1: contribution to hypertension and endothelial dysfunction.
        Circulation. 2007; 115: 1269-1274
        • Sun H.X.
        • Zeng D.Y.
        • Li R.T.
        • et al.
        Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase.
        Hypertension. 2012; 60: 1407-1414
        • Suárez Y.
        • Fernández-Hernando C.
        • Pober J.S.
        • et al.
        Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells.
        Circ Res. 2007; 100: 1164-1173
        • Deng Z.
        • Morse J.H.
        • Slager S.L.
        • et al.
        Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene.
        Am J Hum Genet. 2000; 67: 737-744
        • Pospisil V.
        • Vargova K.
        • Kokavec J.
        • et al.
        Epigenetic silencing of the oncogenic miR-17-92 cluster during PU.1-directed macrophage differentiation.
        The EMBO J. 2011; 30: 4450
        • Brock M.
        • Samillan V.J.
        • Trenkmann M.
        • et al.
        AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension.
        Eur Heart J. 2014; 35: 3203-3211
      1. Pullamsetti SS, Doebele C, Fischer A, et al. Inhibition Of MicroRNA-17 Improves Lung And Heart Function In Experimental Pulmonary Hypertension. 2012:A2617-A2617. doi:10.1164/AJRCCM-CONFERENCE.2012.185.1_MEETINGABSTRACTS.A2617

        • Bertero T.
        • Lu Y.
        • Annis S.
        • et al.
        Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension.
        J Clin Invest. 2014; 124: 3514-3528
        • Santos-Ferreira C.A.
        • Abreu M.T.
        • Marques C.I.
        • et al.
        Micro-RNA Analysis in Pulmonary Arterial Hypertension: Current Knowledge and Challenges.
        JACC Basic Transl Sci. 2020; 5: 1149-1162
        • Ruffenach G.
        • Chabot S.
        • Tanguay V.F.
        • et al.
        Role for Runt-related Transcription Factor 2 in Proliferative and Calcified Vascular Lesions in Pulmonary Arterial Hypertension.
        Am J Respir Crit Care Med. 2016; 194: 1273-1285
        • Courboulin A.
        • Paulin R.
        • Giguère N.J.
        • et al.
        Role for miR-204 in human pulmonary arterial hypertension.
        J Exp Med. 2011; 208: 535-548
        • Jalali S.
        • Ramanathan G.K.
        • Parthasarathy P.T.
        • et al.
        Mir-206 Regulates Pulmonary Artery Smooth Muscle Cell Proliferation and Differentiation.
        PLoS ONE. 2012; 7https://doi.org/10.1371/JOURNAL.PONE.0046808
        • Yue J.
        • Guan J.
        • Wang X.
        • et al.
        MicroRNA-206 is involved in hypoxia-induced pulmonary hypertension through targeting of the HIF-1α/Fhl-1 pathway.
        Lab Invest. 2013; 93: 748-759
        • Yang S.
        • Banerjee S.
        • de Freitas A.
        • et al.
        miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling.
        Am J Physiol Lung Cell Mol Physiol. 2012; 302: 521-529
        • Davis B.N.
        • Hilyard A.C.
        • Lagna G.
        • et al.
        SMAD proteins control DROSHA-mediated microRNA maturation.
        Nature. 2008; 454: 56-61
        • Parikh V.N.
        • Jin R.C.
        • Rabello S.
        • et al.
        MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach.
        Circulation. 2012; 125: 1520-1532
        • Caruso P.
        • MacLean M.R.
        • Khanin R.
        • et al.
        Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline.
        Arterioscler Thromb Vasc Biol. 2010; 30: 716-723
        • Li S.
        • Ran Y.
        • Zhang D.
        • et al.
        MicroRNA-138 plays a role in hypoxic pulmonary vascular remodeling by targeting Mst1.
        Biochem J. 2013; 452: 281-291
        • Sen A.
        • Most P.
        • Peppel K.
        Induction of microRNA-138 by pro-inflammatory cytokines causes endothelial cell dysfunction.
        FEBS Lett. 2014; 588: 906-914
        • Kim J.
        • Kang Y.
        • Kojima Y.
        • et al.
        An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension.
        Nat Med. 2012; 19: 74-82
        • Hergenreider E.
        • Heydt S.
        • Tréguer K.
        • et al.
        Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs.
        Nat Cell Biol. 2012; 14: 249-256
        • Climent M.
        • Quintavalle M.
        • Miragoli M.
        • et al.
        TGFβ triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization.
        Circ Res. 2015; 116: 1753-1764
        • Cheng Y.
        • Liu X.
        • Yang J.
        • et al.
        MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation.
        Circ Res. 2009; 105: 158-166
        • Caruso P.
        • Dempsie Y.
        • Stevens H.C.
        • et al.
        A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples.
        Circ Res. 2012; 111: 290-300
        • Kang K.
        • Peng X.
        • Zhang X.
        • et al.
        MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells.
        J Biol Chem. 2013; 288: 25414-25427
        • Wang D.
        • Zhang H.
        • Li M.
        • et al.
        MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts.
        Circ Res. 2014; 114: 67-78
        • Marchese F.P.
        • Raimondi I.
        • Huarte M.
        The multidimensional mechanisms of long noncoding RNA function.
        Genome Biol. 2017; 18
        • Derrien T.
        • Johnson R.
        • Bussotti G.
        • et al.
        The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression.
        Genome Res. 2012; 22: 1775-1789
        • Taniue K.
        • Akimitsu N.
        The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis.
        Int J Mol Sci. 2021; 22: 1-20
        • Pan T.
        N6-methyl-adenosine modification in messenger and long noncoding RNA.
        Trends Biochem Sci. 2013; 38: 204-209
        • Geisler S.
        • Lojek L.
        • Khalil A.M.
        • et al.
        Decapping of long noncoding RNAs regulates inducible genes.
        Mol Cell. 2012; 45: 279-291
        • Johnson A.W.
        Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively.
        Mol Cell Biol. 1997; 17: 6122-6130
        • Chen C.
        • He Y.
        • Feng Y.
        • et al.
        Long noncoding RNA review and implications in acute lung inflammation.
        Life Sci. 2021; 269https://doi.org/10.1016/j.lfs.2021.119044
        • Leisegang M.S.
        • Fork C.
        • Josipovic I.
        • et al.
        Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function.
        Circulation. 2017; 136: 65-79
        • Neumann P.
        • Jaé N.
        • Knau A.
        • et al.
        The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2.
        Nat Commun. 2018; 9https://doi.org/10.1038/S41467-017-02431-1
        • Xiang Y.
        • Zhang Y.
        • Tang Y.
        • et al.
        MALAT1 Modulates TGF-β1-Induced Endothelial-to-Mesenchymal Transition through Downregulation of miR-145.
        Cell Physiol Biochem. 2017; 42: 357-372
        • Wang D.
        • Xu H.
        • Wu B.
        • et al.
        Long noncoding RNA MALAT1 sponges miR-124-3p.1/KLF5 to promote pulmonary vascular remodeling and cell cycle progression of pulmonary artery hypertension.
        Int J Mol Med. 2019; 44: 871-884
        • Yang L.
        • Liang H.
        • Shen L.
        • et al.
        LncRNA Tug1 involves in the pulmonary vascular remodeling in mice with hypoxic pulmonary hypertension via the microRNA-374c-mediated Foxc1.
        Life Sci. 2019; 237https://doi.org/10.1016/J.LFS.2019.116769
        • Hao X.
        • Li H.
        • Zhang P.
        • et al.
        Down-regulation of lncRNA Gas5 promotes hypoxia-induced pulmonary arterial smooth muscle cell proliferation by regulating KCNK3 expression.
        Eur J Pharmacol. 2020; 889https://doi.org/10.1016/J.EJPHAR.2020.173618
        • Lei S.
        • Peng F.
        • Li M.L.
        • et al.
        LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension.
        Am J Physiol Heart Circ Physiol. 2020; 319: H377-H391
        • Liu Y.
        • Hu R.
        • Zhu J.
        • et al.
        The lncRNA PAHRF functions as a competing endogenous RNA to regulate MST1 expression by sponging miR-23a-3p in pulmonary arterial hypertension.
        Vascul Pharmacol. 2021; 139https://doi.org/10.1016/J.VPH.2021.106886
        • Sun Z.
        • Nie X.
        • Sun S.
        • et al.
        Long Noncoding RNA MEG3 Downregulation Triggers Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via the p53 Signaling Pathway.
        Cell Physiol Biochem. 2017; 42: 2569-2581
        • Golpon H.A.
        • Geraci M.W.
        • Moore M.D.
        • et al.
        HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.
        Am J Pathol. 2001; 158: 955-966
        • Li Z.K.
        • Gao L.F.
        • Zhu X.A.
        • et al.
        LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis.
        Biochem Genet. 2021; 59: 1158-1172
        • Zhang H.
        • Liu Y.
        • Yan L.
        • et al.
        Long noncoding RNA Hoxaas3 contributes to hypoxia-induced pulmonary artery smooth muscle cell proliferation.
        Cardiovasc Res. 2019; 115: 647-657
        • Zhang J.
        • Silva T.
        • Yarovinsky T.
        • et al.
        VEGF blockade inhibits lymphocyte recruitment and ameliorates immune-mediated vascular remodeling.
        Circ Res. 2010; 107: 408-417
        • Wang S.
        • Cao W.
        • Gao S.
        • et al.
        TUG1 Regulates Pulmonary Arterial Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension.
        Can J Cardiol. 2019; 35: 1534-1545
        • Wang R.
        • Zhou S.
        • Wu P.
        • et al.
        Identifying Involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in Treating Pulmonary Hypertension with Melatonin.
        Mol Ther Nucleic Acids. 2018; 13: 44-54
        • Wang H.
        • Qin R.
        • Cheng Y.
        LncRNA-Ang362 Promotes Pulmonary Arterial Hypertension by Regulating miR-221 and miR-222.
        Shock. 2020; 53: 723-729
        • Chen J.
        • Guo J.
        • Cui X.
        • et al.
        The Long Noncoding RNA LnRPT Is Regulated by PDGF-BB and Modulates the Proliferation of Pulmonary Artery Smooth Muscle Cells.
        Am J Respir Cell Mol Biol. 2018; 58: 181-193
        • Liu Y.
        • Zhang H.
        • Li Y.
        • et al.
        Long Noncoding RNA Rps4l Mediates the Proliferation of Hypoxic Pulmonary Artery Smooth Muscle Cells.
        Hypertension. 2020; 76: 1124-1133
        • Li Y.
        • Zhang J.
        • Sun H.
        • et al.
        lnc-Rps4l-encoded peptide RPS4XL regulates RPS6 phosphorylation and inhibits the proliferation of PASMCs caused by hypoxia.
        Mol Ther. 2021; 29: 1411-1424
        • Sun Z.
        • Liu Y.
        • Yu F.
        • et al.
        Long noncoding RNA and mRNA profile analysis of metformin to reverse the pulmonary hypertension vascular remodeling induced by monocrotaline.
        Biomed Pharmacother. 2019; 115https://doi.org/10.1016/J.BIOPHA.2019.108933
        • Sun Z.
        • Liu Y.
        • Hu R.
        • et al.
        Metformin inhibits pulmonary artery smooth muscle cell proliferation by upregulating p21 via NONRATT015587.2.
        Int J Mol Med. 2022; 49https://doi.org/10.3892/IJMM.2022.5104
        • Zehendner C.M.
        • Valasarajan C.
        • Werner A.
        • et al.
        Long Noncoding RNA TYKRIL Plays a Role in Pulmonary Hypertension via the p53-mediated Regulation of PDGFRβ.
        Am J Respir Crit Care Med. 2020; 202: 1445-1457
        • Jandl K.
        • Thekkekara Puthenparampil H.
        • Marsh L.M.
        • et al.
        Long noncoding RNAs influence the transcriptome in pulmonary arterial hypertension: the role of PAXIP1-AS1.
        J Pathol. 2019; 247: 357-370
        • Song R.
        • Lei S.
        • Yang S.
        • et al.
        LncRNA PAXIP1-AS1 fosters the pathogenesis of pulmonary arterial hypertension via ETS1/WIPF1/RhoA axis.
        J Cell Mol Med. 2021; 25: 7321-7334
        • Liu Y.
        • Sun Z.
        • Zhu J.
        • et al.
        LncRNA-TCONS_00034812 in cell proliferation and apoptosis of pulmonary artery smooth muscle cells and its mechanism.
        J Cell Physiol. 2018; 233: 4801-4814
        • Xing Y.
        • Zheng X.
        • Fu Y.
        • et al.
        Long Noncoding RNA-Maternally Expressed Gene 3 Contributes to Hypoxic Pulmonary Hypertension.
        Mol Ther. 2019; 27https://doi.org/10.1016/J.YMTHE.2019.07.022
        • Zhu B.
        • Gong Y.
        • Yan G.
        • et al.
        Down-regulation of lncRNA MEG3 promotes hypoxia-induced human pulmonary artery smooth muscle cell proliferation and migration via repressing PTEN by sponging miR-21.
        Biochem Biophys Res Commun. 2018; 495: 2125-2132
        • Gong J.
        • Chen Z.
        • Chen Y.
        • et al.
        Long noncoding RNA CASC2 suppresses pulmonary artery smooth muscle cell proliferation and phenotypic switch in hypoxia-induced pulmonary hypertension.
        Respir Res. 2019; 20https://doi.org/10.1186/S12931-019-1018-X
        • Wang S.
        • Zhang C.
        • Zhang X.
        Downregulation of long noncoding RNA ANRIL promotes proliferation and migration in hypoxic human pulmonary artery smooth muscle cells.
        Mol Med Rep. 2020; 21: 589-596
        • Cheng G.
        • He L.
        • Zhang Y.
        LincRNA-Cox2 promotes pulmonary arterial hypertension by regulating the let-7a-mediated STAT3 signaling pathway.
        Mol Cell Biochem. 2020; 475: 239-247
        • Wei C.
        • Henderson H.
        • Spradley C.
        • et al.
        Circulating miRNAs as potential marker for pulmonary hypertension.
        PLoS One. 2013; 8https://doi.org/10.1371/JOURNAL.PONE.0064396
        • Chouvarine P.
        • Geldner J.
        • Giagnorio R.
        • et al.
        Trans-Right-Ventricle and Transpulmonary MicroRNA Gradients in Human Pulmonary Arterial Hypertension.
        Pediatr Crit Care Med. 2020; 21: 340-349
        • Omura J.
        • Habbout K.
        • Shimauchi T.
        • et al.
        Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension.
        Circulation. 2020; 142: 1464-1484
        • Schlosser K.
        • Hanson J.
        • Villeneuve P.J.
        • et al.
        Assessment of Circulating LncRNAs Under Physiologic and Pathologic Conditions in Humans Reveals Potential Limitations as Biomarkers.
        Sci Rep. 2016; 6https://doi.org/10.1038/SREP36596
        • Zhu T.T.
        • Sun R.L.
        • Yin Y.L.
        • et al.
        Long noncoding RNA UCA1 promotes the proliferation of hypoxic human pulmonary artery smooth muscle cells.
        Pflugers Archiv Eur J Physiol. 2019; 471: 347-355
        • Su H.
        • Xu X.
        • Yan C.
        • et al.
        LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension.
        Respir Res. 2018; 19: 1-18